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Nonpharmaceutical interventions (NPIs) have been employed to
reduce the transmission of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), yet these measures are already hav-
ing similar effects on other directly transmitted, endemic diseases.
Disruptions to the seasonal transmission patterns of these dis-
eases may have consequences for the timing and severity of
future outbreaks. Here we consider the implications of SARS-
CoV-2 NPIs for two endemic infections circulating in the United
States of America: respiratory syncytial virus (RSV) and sea-
sonal influenza. Using laboratory surveillance data from 2020,
we estimate that RSV transmission declined by at least 20%
in the United States at the start of the NPI period. We sim-
ulate future trajectories of both RSV and influenza, using an
epidemic model. As susceptibility increases over the NPI period,
we find that substantial outbreaks of RSV may occur in future
years, with peak outbreaks likely occurring in the winter of
2021–2022. Longer NPIs, in general, lead to larger future out-
breaks although they may display complex interactions with base-
line seasonality. Results for influenza broadly echo this picture,
but are more uncertain; future outbreaks are likely dependent
on the transmissibility and evolutionary dynamics of circulating
strains.
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Nonpharmaceutical interventions (NPIs) have proven effec-
tive in reducing the spread of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) in many contexts (1–
5). Policy measures including social distancing, school closures,
travel restrictions, and the use of masks in public spaces have
been implemented to reduce the transmission of the virus. In
addition to SARS-CoV-2, NPIs may also reduce the trans-
mission of other directly transmitted, respiratory infections (6,
7). Understanding the possible influence of a SARS-CoV-2
NPI period on the incidence of these infections remains a
key question for the broader public health impact of the pan-
demic. Furthermore, the implications of relaxing NPIs for
future outbreaks of these other infections have not been fully
considered.

Many endemic, directly transmitted, respiratory infections
exhibit distinct seasonal and longer-term cycles in incidence (8–
10). While climate may drive the seasonality of these diseases in
some cases (11–14), other directly transmitted infections, such
as measles, are driven primarily by seasonal cycles of popula-
tion aggregation such as the timing of school semesters (15,
16). Secular changes in susceptible recruitment, for instance,
due to vaccination campaigns or declines in birth rates, can
disrupt long-run patterns of infection dynamics (17, 18). Sim-
ilarly, human movement via either displacement or migration
has also been shown to alter patterns of infection (19). While
there has been less work to identify the polymicrobial implica-

tions of nonpharmaceutical control measures, evidence from the
1918 influenza pandemic suggests that NPIs may have reduced
measles transmission by 38% (20).

Two important directly transmitted, viral respiratory diseases
circulating in the US population are seasonal influenza and res-
piratory syncytial virus (RSV). Seasonal influenza accounts for
significant annual mortality, with the ongoing evolution of the
virus’ antigenic sites leading to evasion of the host immune sys-
tem (21, 22). Epidemics of seasonal influenza at higher latitudes
are driven largely by variations in climate (12, 13). While there is
some evidence of herd immunity, a complex interaction between
alternating subtypes and antigenic drift determines year-to-
year variation in susceptibility and corresponding outbreak
size (10, 23).

RSV causes lower respiratory tract infections in young infants,
and contributes to approximately 5% of under-five deaths glob-
ally (24), with no vaccine currently available. Previous models
show RSV epidemics exhibit limit cycle behavior, tuned by
climate-driven seasonality (Materials and Methods) (11, 25). In
most regions in the United States, RSV and influenza exhibit
peak incidence in the winter months, coinciding with cold, dry
climatic conditions (11, 13).

Here we consider the impact of nonpharmaceutical control
measures on the incidence of these two respiratory infections.
We focus primarily on RSV, with the simpler limit cycle dynam-
ics presenting an opportunity to probe interactions with NPIs.
High interannual irregularity in influenza dynamics, driven by
variation in circulating strains and subtypes, makes it harder to
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attribute the impact of NPIs. We first evaluate the influence
of control measures targeting SARS-CoV-2 using influenza and
RSV surveillance data. Since changes to physician visits for both
viruses could be driven by behavioral responses to control mea-
sures, we look at the percent positive tests for both viruses as
reported from laboratory surveillance data (see Discussion for
the limitations of this measure).

Results
Fig. 1 shows the percent positive tests for RSV (Fig. 1A) and
influenza (Fig. 1B) for 2019–2020 (highlighted) and four pre-
ceding years, for four states (RSV data with at least 2 y of
observations were not available for other states). A national
emergency in response to the COVID-19 pandemic was declared
on March 13, 2020 in the United States, shown with the dashed
line. Following the declaration, many states put in place con-
trol measures to limit the spread of SARS-CoV-2. Despite
the declaration occurring after the typical seasonal peak in
cases, a decline in prevalence is observed beyond mean seasonal
levels. In Florida, where RSV cases tend to persist through-
out the year (11, 25), observed RSV prevalence is reduced
to near zero in March 2020. A similar pattern is visible in
Hawaii for influenza, where cases are normally persistent. In
Fig. 1C, we show the 2019–2020 change in percentage posi-
tive influenza tests relative to weekly mean over the previous
four seasons. The 2019–2020 influenza season appears to have
been more severe than average, with a relative increase in
prevalence prior to March 2020 possibly driven by increased
circulation of influenza subtype B (SI Appendix, Figs. S1 and
S3). However, following the declaration of emergency, declines
to below average levels can be observed across almost all
reporting states.

To explore the possible implications of control (i.e., NPI)
periods for the future dynamics of influenza and RSV, we use
epidemiological models and consider a range of possible sce-
narios for the length and intensity of control measures. Given
the current uncertainty in the future course of the COVID-
19 pandemic, and how responses might change over time, we
cannot make precise predictions of future outcomes. For RSV,
we use the time series Susceptible–Infected–Recovered (SIR)
model (26, 27), fitted to historic US case data described in previ-
ous work (11). Specifically, we evaluate how NPI perturbations
impact the epidemic limit cycles of RSV. We first consider a
range of control period lengths and percent reduction in trans-
mission based on Florida and Texas seasonality. We consider
these two states for two reasons. First, the states exhibit distinct
dynamics patterns of RSV incidence, with Florida having per-
sistent cycles and an earlier summertime outbreak, and Texas
having annual, wintertime outbreaks. Second, in terms of data
availability, both these locations have recent surveillance data
as well as historic case data, enabling the estimation of possible
changes to transmission in 2020. Minnesota was not consid-
ered here because the percent positive surveillance data do not
accurately reveal the biennial dynamics in this location (11).

Fig. 2 A and B shows the impact of these varied controls on
peak incidence (I/N), peak proportion susceptible (S/N), and tim-
ing of peak I/N. Major dynamic effects are caused by a buildup
of susceptible individuals as NPIs reduce transmission. Longer
controls, with a greater reduction in transmission, generally lead
to a greater increase in susceptibility and larger resulting out-
breaks. For Florida, these outbreaks tend to occur in the summer
months, but can occur throughout the year. For Texas, where
seasonal transmission peaks in the winter, peak outbreaks occur
only in the winter months, with the earliest outbreak in 2022.
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Fig. 1. Reduction in RSV and Influenza cases since March 2020. The percent positive laboratory tests for (A) RSV and (B) influenza across four US states.
Data from 2020 are highlighted in red (RSV) and light blue (influenza). Data from previous seasons (2016–2019) are highlighted in gray. (C) The 2020 change
relative to seasonal mean for influenza for all available US states (RSV surveillance data are only available for select states). Dashed line shows timing of the
declaration of national emergency.
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Fig. 2. RSV simulations for Florida and Texas. (A and B) Surface plots show the change in peak incidence per capita and peak susceptibility per capita,
relative to pre-2020 maxima, for varied lengths of control (weeks) and percent reduction in transmission. Black dashed line in the first plot row shows the
region above which minimum incidence drops below 1, that is, where local extinction is possible. The lower surface plot shows the timing of peak incidence
in this period. Results for (A) Florida and (B) Texas are shown. (C) Simulations of future RSV epidemics, assuming a control period of 1 y and a 20% reduction
in transmission, are shown for Florida and Texas. Gray block represents the NPI period, red line is proportion infected (I/N), and blue dashed line is proportion
susceptible (S/N).

We use RSV laboratory surveillance data for Florida and
Texas to parameterize the actual reduction in transmission
caused by SARS-CoV-2 NPIs. We find that a reduction in trans-
mission of 20% is able to conservatively capture the decline in
prevalence recently observed in the surveillance data (Fig. 2C
and SI Appendix, Fig. S4). Using this model parameterization, we
run simulations with a control period of 1 y. Results from Florida
and Texas, shown in Fig. 2C, indicate an increased likelihood of
severe RSV outbreaks after the control period has ended.

We run simulations to investigate the potential impact of con-
trol measures on RSV for over 300 US counties and Mexican
states using the time series SIR model fitted to historic county-
level case data (Fig. 3) (11). Counties with short time series (less
than 5 y of data) and sparse numbers of cases (under 10 at peak)
are removed. We compare the impact of two periods of con-
trol: lasting 6 mo (Fig. 3 A and C) and lasting 1 y (Fig. 3 B
and D). Although the 6-mo control period occurs outside of the
peak season of the virus, substantial RSV outbreaks are still pro-
jected as a lagged response to the SARS-CoV-2 NPIs. In general,
the longer, 1-y control period results in larger RSV outbreaks,
yet complex interactions with seasonality arise. For New York
County, the shorter control period results in a large outbreak in
the following winter (2021–2022), but the longer control period
results in a more persistent but less intense outbreak. In con-
trast, a large RSV outbreak is observed in Miami after a year of
control measures. In most cases, simulated dynamics eventually
return to the pre-NPI attractor. For Boulder County, by contrast,
control periods have complex interactions with the seasonal bien-

nial epidemics of the disease. In these deterministic simulations,
a longer control period in Boulder County causes the epidemic
trajectory to shift to a separate coexisting attractor (Fig. 3E and
SI Appendix, Fig. S8). In general, the timing and size of future
outbreaks will depend on the interaction between the dynamics
of susceptibility and the seasonality of transmission.

Compared to RSV, influenza epidemics exhibit a less uni-
form seasonal pattern. Gradual evolution of the influenza virus’
antigenic sites (antigenic drift) means population susceptibility
changes over time (21), and different subtypes may circulate
each year with different levels of transmission (28). In our pre-
liminary analysis, we therefore focus on the overall dynamics
of susceptibility, ignoring year-to-year differences in circulating
strains. We simulate influenza using a Susceptible–Infected–
Recovered–Susceptible (SIRS) model, developed in previous
analyses to explore influenza seasonality in the United States,
where R0 varies between a maximum and minimum value driven
by changes in absolute humidity (12, 13). To capture the vari-
ability in transmission rates, we consider two scenarios: R0max =3
and R0max =2.2, based on the range of prior estimates (13, 28).
In both scenarios, R0min =1.2. We simulate the model using the
climate of New York City.

Fig. 4 shows the results using the influenza model under two
control scenarios (6 mo and 1 y with a 20% reduction in trans-
mission) and two transmission scenarios (high R0 and low R0).
The 6-mo controls have relatively little impact on influenza sea-
sonality in New York in the high-transmission scenario. In the
equivalent lower-transmission scenario, outbreaks after the NPI
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Fig. 3. RSV simulations for US counties and Mexican states. Simulations for four US counties with either (A) 6 mo or (B) 1 y of controls. Simulations for all
US counties (with population> 500,000) and Mexican states in data with (C) 6-mo or (D) 1-y control period, where max incidence prior to the control period
is set to 1. (E) Susceptible–Infected phase plane plot for Boulder, CO, showing epidemic trajectory with incidence time series above. The epidemic settles on
a coexisting attractor postcontrol shown by the distinct precontrol (dark blue) and postcontrol (dark red) stable trajectories.

period are slightly elevated. In contrast, longer control periods
provide more time for the susceptibility to build, resulting in an
earlier influenza epidemic starting in the summer months. In the
low-transmission scenario, this is followed by a large outbreak
in 2021. While these results suggest a more uncertain impact of
NPI periods on future influenza outbreaks, dynamics will likely
differ in locations with more-persistent influenza cycles, such as
the tropics (9).

Discussion
NPIs put in place to limit the spread of SARS-CoV-2 are already
beginning to affect the transmission of other directly transmitted,
endemic diseases. Our results suggest that a buildup of suscepti-
bility during these control periods may result in large outbreaks
in the coming years. Shorter NPIs may occur outside of the peak
season of the disease but still lead to elevated future outbreaks.
Longer NPIs may overlap with seasonal peak forcing, resulting in
larger future outbreaks on average, but with complex transient
effects (a more detailed analysis of NPI timing is shown in SI
Appendix, Figs. S9 and S10). Results for RSV in the United States
suggest that these outbreaks may reach their peak in the winter

of 2021–2022. This finding appears robust even when we account
for possible imported cases. Following perturbation, RSV gener-
ally returns to the endemic attractor, but more complex behavior
is possible (Fig. 3E).

Preliminary results for influenza suggest outbreaks may occur
outside of the typical season, coinciding with the end of the con-
trol period. However, we do not address complex features of
the influenza virus such as circulating subtypes or the implica-
tions of global NPIs for antigenic drift. The latter may prove
significant, for example, if the evolution rate first declines with
NPIs, then rebounds (29). More broadly, our results suggest
that healthcare systems may need to prepare for future out-
breaks of non–COVID-19 infections, as NPIs are relaxed. These
outbreaks may occur several years after initial NPIs were put
into place.

There are several caveats to these results. First, we are at the
early stages of understanding the implications of SARS-CoV-2
NPIs for endemic infections. In our model, we used a fixed
reduction in transmission; however, this may not capture het-
erogeneities in NPIs across locations and over time. As more
surveillance data become available, tracking further changes to
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and (B and D) low (R0max = 2.2) transmission rates.

endemic disease prevalence will be important. Serological sur-
veys, currently used to measure exposure and potential immunity
to SARS-CoV-2, could similarly be employed to monitor these
polymicrobial responses (30–32).

Second, and importantly, an influx of COVID-19 cases could
artificially lower the percent positive test data we use to cali-
brate reductions in RSV and influenza transmission. For RSV,
this seems unlikely, as the mean age of infection is much lower
than for COVID-19, and cases are unlikely to overlap. Most indi-
viduals are infected with RSV before the age of 2 y (18). In
contrast, infants appear less likely to be infected with SARS-
CoV-2, and severe respiratory presentations are unusual (33, 34).
We also note that total tests for RSV have declined since March
(SI Appendix, Fig. S2). For influenza, it is more plausible that
an influx of COVID-19 cases could be biasing results; however,
the sharp decrease observed across states right after the national
emergency declaration suggests that it is unlikely to be primar-
ily driven by this factor. The total influenza specimens collected
have also declined (SI Appendix, Fig. S1). As a further check, we
create an incidence proxy, following ref. 35, by multiplying per-
cent influenza-like illness by percent positive tests (SI Appendix,
Fig. S11). Substantial declines in this measure are still observed
following the emergency declaration.

Possible biases could inflate our measure of the percent reduc-
tion in transmission due to NPIs (estimated at 20%). However,
similarly, the relatively limited time horizon of our data, and the
fact that current NPIs are concurrent with the seasonal lower
transmission period, could mean we are underestimating this
reduction. Recent evidence from Hong Kong estimated a 33 to
44% reduction in influenza transmission due to NPIs (7). We
therefore stress that our results are uncertain, and we cannot yet
make precise predictions. Unbiased polymicrobial surveillance
would enable better attribution of NPI effects and is a crucial
area for future development. In addition, interactions between
the SARS-CoV-2 virus and endemic viruses may be more com-
plex than described here. Immunological relationships between
viruses, both competitive and cooperative, may have broad-scale
implications for future infection dynamics (36). The impact of

NPIs on strain structure of RSV (37) is an important area for
future work.

Finally, although we have primarily focused on the United
States, outcomes may be more severe in Southern Hemisphere
locations where NPI timing aligns with the peak season for sea-
sonal wintertime diseases. Our results also illustrate the potential
for COVID-19 NPI to impact the dynamics and persistence of a
much wider range of infections. Increased surveillance, serolog-
ical surveys, and local modeling efforts will help determine the
future dynamics and risk from these circulating infections.

Materials and Methods
Data. Recent (2016–2020) disease data based on laboratory results from
either antigen or PCR tests for RSV are obtained from the corre-
sponding government websites for each state: Florida (unspecified) (38),
Minnesota (antigen) (39), Oregon (antigen and PCR) (40), and Texas
(antigen) (41). Even though a few other states report RSV surveillance, we
do not include them in our analysis, as they do not provide information
on RSV circulation from previous years. Some RSV data are extracted from
the graphs of the state surveillance reports, as raw values are unavailable.
Influenza surveillance data are obtained from Centers for Disease Con-
trol and Prevention FluView Interactive (42). Historic RSV data (pre-2010)
used to train the RSV model come from hospitalizations data originally
obtained from the State Inpatient Databases of the Healthcare Cost and
Utilization Project maintained by the Agency for Healthcare Research
and Quality (43). Population data for the United States are obtained
from publicly available combined files of US Census Bureau data avail-
able via the National Bureau of Economic Research (44). US birth data
are downloaded from the Centers for Disease Control (45). Transmission
in the influenza model relies on specific humidity data taken from NASA’s
Modern-Era Retrospective analysis for Research and Applications version
2 dataset (46, 47).

Models. We first calculate location-specific seasonal transmission rates using
the time series Susceptible–Infected–Recovered model (TSIR), a discrete time
adaptation of the SIR model (26, 48). County-level transmission rates were
calculated for a previous study (11). The TSIR model describes the number
of infected and susceptible individuals as a set of difference equations. The
number of susceptible individuals is given by

St+1 = St + Bt − It + ut , [1]
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where St is the number of susceptible individuals, It is the number of
infected individuals, Bt is births, and ut is additive noise, with E[ut] = 0. The
time period t is the generation time for RSV, set at 1 wk. The susceptible
population can be rewritten as St = S̄ + Zt , where S̄ is the mean number of
susceptible individuals in the population and Zt is the unknown deviation
from the mean number of susceptible individuals at each time step. Eq. 1 is
rewritten in terms of these deviations and iterated starting at Z0,

t−1∑
k=0

Bk =−Z0 + 1/ρ
t−1∑
k=0

Irk + Zt + ut , [2]

where ρ is the reporting rate which accounts for both underreporting of RSV
hospitalizations and infections that did not result in hospitalization, and Irk

is the reported incidence.
Using this formulation, it is shown that a linear regression of cumulative

births on cumulative cases gives Zt as the residuals, assuming ut is small.
The inverse of the slope of the regression line provides an estimate of the
reporting rate ρ. S̄ is calculated by defining the expected number of infected
cases at each time step, E[It+1], as

E[It+1] =
βt Iαt St

Nt
, [3]

which is log-linearized as

ln(E[It+1]) = ln(βt) +αln(It) + ln(S̄ + Zt)− ln(Nt), [4]

where βt are biweekly factors that capture the seasonal trend in transmis-
sion rate, and α is a constant that captures heterogeneities in mixing and
the discretization of a continuous time process. We fix α at 0.97 to be con-
sistent with prior studies (11, 49). Eq. 4 is fit using a Poisson regression with
log link. The mean number of susceptible individuals, S̄, can then be esti-
mated using marginal profile likelihoods from estimating Eq. 4, for a range
of candidate values. Following ref. 11, we add one to zero observations in
the infected time series which represents continual low-level background
transmission, resulting in the lack of epidemic extinction we observe in
the data. For fitting the TSIR, we use the tsiR package (50). When fitting
to state-level data for Texas and Florida, we use a locally varying spline
regression for Eq. 2, which accounts for macroscale changes in reporting
over time.

We generate forward simulations using county seasonal transmission
rates, βt , assuming a constant population and birth rate (based on aver-
age population and average birth rates from the historic time series). Model
results are shown in terms of incidence per capita. The simulations are
initially run for 40 y to remove transient dynamics. The control period is
introduced to the model by lowering the seasonal transmission rates by a
fixed proportion, starting on week 11 of 2020 (the week when a national

emergency was declared). For all simulations, we lower the transmission by
20% unless otherwise specified.

The percentage reduction in transmission is estimated by comparing
model simulations to laboratory RSV data from 2020 for Texas and Florida.
State-level data from Minnesota are not used because the laboratory data
does not capture the biennial cycles of incidence that exist in this state (11).
Other states do not have multiple years of available data to compare present
reductions in prevalence. Laboratory test data are scaled to the model pro-
jection using the 2016–2020 mean, that is, Tscaled = (T/T̄) * P̄, where T is the
laboratory test data and P is the model projections. Simulations are run
using reductions in transmission ranging from 0 to 90% in 10% intervals.
For Florida, a 20% reduction in transmission, starting in week 11 (when the
national emergency was declared), is found to be the best fit (mean absolute
error) reduction based on available data (SI Appendix, Fig. S4). For Texas,
both 10% reduction and 20% reduction give similarly good fits. Joint error
is minimized using the 20% reduction rate.

For influenza we use a climate-driven SIRS model (13, 14, 28). Antigenic
drift of the influenza virus results in a seasonal return to susceptibility,
meaning TSIR methods are not appropriate for this infection. The model
is described by a series of differential equations (51),

dS

dT
=

N− S− I

L
−
β(t)IS

N
[5]

dI

dT
=
β(t)IS

N
−

I

D
. [6]

As before, S is the susceptible population, I is the number of infected indi-
viduals, and N is the total population. D, the mean infectious period, is set
at 4 d. L, the duration of immunity, is fixed at 40 wk, allowing the influenza
epidemic to recur each season. β(t) is the contact rate at time t and is related
to the basic reproductive number by R0(t) = β(t)D. R0 is related to specific
humidity q(t) using the equation

R0(t) = exp(a * q(t) + log(R0max − R0min)) + R0min, [7]

where a =−180, based on earlier findings (12, 13, 28). R0min is minimum
reproductive number, fixed at 1.2, following ref. 28. R0max is the maximum
reproductive number. In Fig. 4, we use values of R0max = 2.2 and R0max = 3,
based on plausible ranges observed in refs. 13 and 28.

Data Availability. Data for this study come from publicly available datasets.
Code and collated data to recreate the main results are available via GitHub
at https://github.com/rebaker64/NPIs.
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